AD-A167 528

UNCLﬁSS!FIED

STEEP GRAVITY NAVES: HﬁVELOCK’S HETHOD REVISITED(U) 11
ISCONSIN UNIV-NADISON MATHEMATICS RESERRCH CENTER
J VﬂNDEN-lROECK APR 86 MRC-TSR-2933 DRRGZS-OO-C-OI41




Rl

2 22
= 129

lla2

L2 e

=

FPEPERE
i

—
.
—
rr
I3

re

N
(3

Tt V. VLV EERTTI T v W

MICRNCOR CHART

o v = F TVes & & ¥ T aTa

;

]

‘-.-.- MR R e Nt e et R e . . .
RN R A AR P UL S e e e T e e

GRS o W S R AR R R T y o IR,

—t o




MRC Technical Summary Report #2933

STEEP GRAVITY WAVES:
METHOD REVISITED

HAVELOCK'S

v

\.
)
h ]

X
5

Jean-Marc Vanden=Broeck

h

[
."
FXAE A

-
»

N

YA

©oe

M
A

AD-A167 520

Mathematics Research Center

University of Wisconsin—Madison ‘
610 Walnut Street DTl_g
Madison, Wisconsin 53705 ELEC

Y 2 2 1986

April 1986

(Received April 7, 1986)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park

North Carolina 27709




R UL N S o SRR N & S AP A SRR (T S A SR S i AR 0 A A AT A i SR SIS S & A B Aul S LAt Sl Ju D cat sl et ot ooy <o m

Je .,-b *

e

0 ' .

UNIVERSITY OF WISCONSIN-MADISON A
MATHEMATICS RESEARCH CENTER ﬁﬁﬁ:f

o ..:-:.

STREP GRAVITY WAVES: HAVELOCK'S METHOD REVISITED SN

*
Jean-Marc Vanden-=Broeck

Technical Summary Report #2933
April 1986

ABSTRACT

‘)Gravity waves propagating at the surface of a fluid of infinite depth are

considered. The problem is formulated in terms of a series expansion due to

Havelock. The series is truncated after a finite number of terms and the
unknown coefficients are found by collocation. It is shown that this simple

numerical procedure yields accurate results for waves of arbitrary steepness.h‘J_ﬁJ
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SIGNIFICANCE AND EXPLANATION

Over the last 15 years many efficient numerical schemes have heen

developed to compute steep water waves. These schemes are often based on

In this paper we present a new numerical approach based on an expansion

proposed by Havelock in 1919, This scheme is very easy to implement and

integro-differential equation formulations or on collocation techniques.

yields highly accurate results for waves of arbitrary steepness.
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1. Introduction

This paper deals with the numerical computation of periodic two-dimensional gravity
waves propagating at the surface of a fluid of infinite depth. This problem was
considered before by many investigators. Most of the existing numericali procedures belong
to one of two main classes.

In the first class the problem is formulated as an integro-differential equation for

the free surface profile. This equation is discretized and solved numerically by Newton's

2

method (see for example Schwartz and Vnnden-Broeck‘z, Chen and Saffman“, Vanden-Broeck

15

Schwartz '~, and Vanden-Broeck").

In the second class the solution is represented by a Pourier expansion. The unknown

Pourier coefficients are found analytically as series in powers of a parameter equivalent

1

to the wave steepness (Stokes‘s, Schwartz ', Lonquet-Higqins7, Cokelet‘) or numerically by

3 10y,

collocation (Chen and Saffman”, Rienecker and Penton

Numerical schemes of the second class ares usually inefficient to compute directly
steep waves hecause the FPourier coefficients decay too slowly as the wave height

approaches its maximum. Accurate solutions can however be ohbtained indirectly by

1

recasting the Fourier expansion as Pad8 approximants (Schwartz1 ’ Lonquet-ﬂigq;ns’,

COkelet4). On the other hand, very steep waves can be caicuiated directly by using

numerical schemes of the first class (Schwartz and thdon-ﬂroeck12, Chen and Saffmanz,

Vanden-Broeck and 8chwattz15).

'Department of Mathematics and Mathematics Research Center, University of Wisconsine
Madison, Madison, Wisconsin 53705.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the National
Science Foundation under Grant No. MCS800-1960.
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Successful numerical procedures of the second class have been developed to compute
directly the highest wave (chhella, Olfe and Rbttunn9, "1111&ﬂl16). The basic idea of
these numerical procedures is to represent the solution by an expansion which takes into
account the fact that the highest wave has a sharp crest with a 120° degree angle.

In this paper we present a numerical scheme of the second class which enables us to
compute Adirectly very steep waves. Our procedure follows closely the work of Havelocks

9

and includes as a particular case Olfe and Wootman's’ scheme.

-2
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2. Numerical Results

We consider two-dimensional periodic waves of wavelength A and phase velocity C
propagating under the influence of gravity g at the surface of a fluid of infinite
depth. We choose a frame of reference in which the waves are steady and we introduce
Aimensionless variables by taking A as the unit length and C as the unit velocity.

The effects of compressibility, viscosity and surface tension are neglected.

We introduce cartesian coordinates with the x-axis at the mean water level and the y-
axis directed vertically upwards. Gravity is acting in the negative y-direction. Next we
define the complex potential f = ¢ + iy and the complex velocity W = u - iv. Here ¢
is the potential function, ¥ the stream function, u the x-component of the velocity
and v the y-component of the velocity. Without loss of generality we choose ¥ = 0 on
the free surface and ¢ = 0 at one crest.

The condition of constant pressure (p = 0) on the free surface can be written

IWI2+-‘-:-y-1. v =0

2
nC
- 2
u =) (2)

Following Stokes13 we seek W as an analytic function of € =¢ + iy in the lower half
piane ¢ < 0. ‘This function is periodic and tends to one as f + ==, Thus we have
W(E + 1) = W(f) (3)
W+1 as £+ =, (4)
We find it convenient to eliminate y from (1) by differentiating (1) with respect to ¢.

Using the identity
3% . Ay -1
pai gy . -
9 : 9 w

we obtain

|w| 2%1L - 31 EEEE = 0, Y =0 .
9 u 'w'

Following Cokeletd we define the amplitude parameter e? by the relation




€2 =1 - Jwoy|2lwni? ., (7
Por the highest wave W(0) = 0 and € = 1, In general € ranges between 0 and 1.
The relations (3) and (4) show that W can be represented by the following

expansion:

L]
Wig) = 1+ [ peinf (8)

n=1
Because of the symmetry of the wave about f = 0, the coefficients bn are real. They
have to be found to satisfy (6) on ¢ = 0. This can be achieved approximately by using
the collocation procedure mentioned in the introduction. Thus we truncate the series in

(8) after N terms and we introduce the N mesh points

21 - 1
4N

ising (8) we obtain W(e;) in terms the coefficients bn. Substituting these expressions

o = I = 1,000, . (9)

into (6) we obtain N nonlinear algebraic equations for the ¥ + 1 unknowns

2

u,b1,...,bN. Another equation is obtained by using (7) where ¢ is specified. Thas ’

sytem of W + 1 equations is solved by Newton's method. Once the coefficient bn are

found, the free surface profile can be obtained by integrating numerically (5).

In Table I we present numerical values of u versus 52 obtajned with N = 60, Por

comparison we also show the accurate values of u obtained by COkelet4. Our vaiues agree

with those of Cokelet to 5 decimal places for 2 ¢ 0.6. However, the accuracy of our

2

results decreases rapidly as € approaches 1. This is due to the slow convergence of

the expansion (8) as the wave of maximum height is approached.

The highest wave, (i.e. €2 = 1) is characterized by a corner at the crest with an

13

enclosed angle of 120° (Stokes'~, Amick 35_3&:1). Therefore

Wwie) ~£V3 ag £+ 0. {10)

Following Miche118 and Nlfe and Rootman9 we compute the highest wave by repliacing (8) by :‘

o«
WiE) = (1 - e HTE V31 4 T ¢ N | (1 e
n=1 e

4= - n't-f
L4 .-\!
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Table I: Values of u for 0.6 < €2 < 0.99 obtained

. by using (8).
€2 N = 60 Cokelet
) 0.6 1.12229 1.12229 oY
e
0.8 1.17209 1.17093
0.9 1.20088 1.19014
0.94 1.21684 1.19404
0.99 1.25358 1.19329

The expansion (11) sacisfies (10). We truncate the expansion (11) after N - 1 terms and
satisfy (6) at the N mesh points (9). This yields N equations for the N unknowns
UCqreessCyoq+ This system was first solved hy Olfe and Rootmang- In particular chay
found u = 1,93072. We have repeated the calculation and confirmed this value.

The previous considerations suggest to combine the advantages of (8) and (11) by

representing the solution by the expansion

o«
W(g) = (1 - Be™22EV/ 3y ¢ T g 02N (12)
n=0

This expansion was first proposed by Havelocks. As € + 0,8+ 0 and (12) approaches

(8). ™urthermore 8 + 1 as € + 1, so that (12) includes (11) as a particular case.

We now truncate (12) after N ~ 1 terms and satisfy (6) at the N mesh points
(9). Thus we ohtain N equations for the N + 1 unknowns B,u,d1,...,d“_1. The last
equarion is given hy (7) where c2 is specified.

Numerical values of U versus tz for N =» 60, 80 and 120 are presented in Table

IT1. The values obtained by Cokolet‘ are also shown in the tahle. These results indicate

cthat the scheme converges as N increases. PFurthermore, the procedure yields values as

accurate as those of Cokqlot‘ for values of € close to one. A comparison hetween the
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values for N = 60 in Tables I and II, show clearly that the expansion (12) converges

much faster than the expansion (8).

Table II: Values of u for

€2 N = 60
0.6 1.12229
0.8 1.17096
0.9 1.19007
0.94 1.19310
0.99 1.19321

0.6 € €2 < 0.99 obtained by using (12).

N = 80

1.12229

1. 17094

1.19025

1.19367

1.19324

N = 120

1.12229

1. 17093

1.19019

1.19409

1.19332

Cokelet

1.12229

1.17093

1.19014

1.19404

1.19329

It is worthwhile mentioning that Grancs and Schvartz'1 have demonstrated that the

Havelock expansion (12) produces the wrong type of singularities above the fluid (i.e.

] in ¥ > 0). This does not of course invalidate the Havelock expansion.

the free surface (i.e. in ¢ < 0).

In fact, our

numerical results show that this expansion is rapidly convergent inside the fluid and on
\
|
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